Rutgers University: Algebra Written Qualifying Exam August 2017: Problem 1 Solution

Exercise. Let G be a group and let $H \subset G$ be a proper subgroup containing all other proper subgroup of G. Show the following:

(a) *H* is normal.

Solution. *H* is normal if $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$ If *g* is contained in some proper subgroup of *G*, then g^{-1} is also contained in that proper subgroup. $\implies g, g^{-1} \in H$ $\implies \forall h \in H, ghg^{-1} \in H$ since *H* is closed under multiplication Suppose *g* is not contained in any proper subgroup of *G*. For any $g \in G, \langle g \rangle \subseteq G$ is a subgroup of *G*. Since *g* is not contained in any proper subgroup of *G*, it follows that $G = \langle g \rangle$. $\implies G$ is the cyclic group generated by *g* Since *G* is cyclic, *G* is abelian $\implies \forall g \in G$ and $h \in H \subset G$, $ghg^{-1} = gg^{-1}h = h \in H$

Thus, H is a normal subgroup of G

(b) G is a cyclic group.

(see part a)

(c) G is a finite group.

Solution.

Suppose G is infinite. If $G = \langle g \rangle$ is infinite, they $\langle g^k \rangle$ create distinct subgroups for all $k \in \mathbb{N}$. $\implies \langle g^3 \rangle$ and $\langle g^2 \rangle$ are distinct proper subgroups of $G = \langle g \rangle$. $\implies g^{-2} \in \langle g^2 \rangle \subseteq H$ and $g^3 \in \langle g^3 \rangle \subseteq H$ $\implies g^{-2}g^3 = g \in H$. But then $H = \langle g \rangle = G$ which is contradiction since H is a proper subgroup. Thus, we conclude that G must be finite.